Jumat, 11 Januari 2019

KAGGLE

apakah Kaggle itu?
Kaggle adalah situs dan platform untuk berlomba membuat model terbaik untuk menganalisa dan memprediksi suatu dataset. Dataset ini diberikan oleh suatu perusahaan, dengan suatu deskripsi masalah tertentu. Misalnya, diberikan data rumah beserta fitur-fiturnya dan harga jualnya, dan deskripsi masalahnya adalah buatlah model untuk memprediksi harga jual berdasarkan fitur-fitur tersebut. Sederhana kan?
Kaggle sangat bermanfaat untuk semua yang berkecimpung di dunia data science.
Banyak perusahaan yang mempunyai permasalahan analisa/pemodelan data, namun mereka tidak punya sumber daya data scientist yang mumpuni untuk memecahkannya. Dengan Kaggle, mereka bisa meminta bantuan data scientist seluruh dunia untuk memecahkan masalah tersebut dengan membuat model terbaik. Istilah kerennya crowd sourcing. Biasanya dengan dengan imbalan hadiah.
Kaggle juga dapat dimanfaatkan oleh perusahaan untuk merekrut data scientist atau ML engineer, dengan cara menyelenggarakan kompetisi untuk tujuan rekrutmen.
Bagi kita praktisi atau pelajar data science, Kaggle sangat berguna untuk belajar, berlatih,  dan mempertajam skill dan insting data science kita. Dengan mempelajari write up atau ulasan orang lain dalam memecahkan suatu masalah, kita bisa mendapat banyak ide dan ilmu tentang bagaimana proses dan jalan berpikir dia memecahkan masalah data science. Lalu dengan ikut dalam kompetisi, kita akan diberi feedback tentang akurasi model kita, dan dari situ kita berlatih bagaimana membuat model yang lebih baik. Selama kompetisi, sering orang berbagi tips atau ide yang dia pakai, sehingga dari situ tidak hanya kita bisa memperbaiki model kita, tapi kita juga bisa belajar, menjadi lebih kreatif, sekaligus melatih insting pemecahan masalah kita.
Setelah kompetisi selesai, biasanya para pemenang atau orang yang mendapat skor tinggi akan menulis write up tentang solusi dia juga, sehingga kita bisa belajar solusi yang wow itu seperti apa.
Bahkan walaupun Anda masih pemula sekali, yang belum bisa koding membuat model sendiri (seperti saya saat menulis artikel ini), membaca ulasan Kaggle sangat berguna untuk mengetahui bagaimana contoh permasalahan data science di dunia nyata (misalnya, dataset di dunia nyata sering terdapat banyak cacat, tidak seperti dataset di kelas MOOC), bagaimana cara berpikir seorang data scientist dalam memecahkan suatu masalah, dan pengetahuan-pengetahuan apa yang harus dipelajari untuk membuat solusinya.

Kaggle adalah TopCoder untuk Data Scientist

image

Keuntungannya adalah data set yang digunakan adalah data set yang sudah baik dan hanya membutuhkan sedikit data cleansing. Bentuk nya tabular sehingga memudahkan kita untuk melakukan eksplorasi dan pemodelan.
Di kaggle banyak kompetisi yang berjalan, oleh karena itu kita akan memilih kompetisi yang mudah untuk dijadikan sebagai bahan latihan. Project Hello World di kaggle adalah kompetisi Titanic. Dalam kompetisi titanic kita akan memprediksi mana saja penumpang yang akan bertahan hidup atau selamat.
Segera saja kita mulai tanpa panjang lebar. Buka website berikut
https://www.kaggle.com/c/titanic
Lakukan registrasi jika anda baru pertama kali. Anda dapat sign in dengan menggunakan google plus, facebook ataupun twitter.
Hal yang pertama sekali perlu dilakukan adalah memahami deskripsi dari masalah yang ada. Hal ini dapat di lihat pada bagian description.
SNAGHTML13dc6643

Dari dekripsi tersebut kita mengetahui bahwa kompetisi ini tujuannya adalah memberikan tutorial bagi para pemula dalam kontes machine learning. Kita juga mengetahui bahwa tugas yang di berikan adalah memprediksi penumpang selamat atau tidak. Jadi tugas ini merupakan binary classification yang artinya memilih dari 2 pilihan ( selamat atau tidak )
Setelah anda mengetahui masalah yang harus dipecahkan tentu saja selanjutnya kita ingin melihat bagaimana kita akan melakukan deliverables nya. Format dari deliverables yang akan kita submit.
SNAGHTML13e1c36e
Dari penjelasan diatas kita dapat mempelajari format dari submission. Kita diminta untuk mensubmit file dengan format yang telah ditentukan.
Kita sudah mempelajari bagaimana submission nya, sekarang kita masuk ke bagian yang lebih seru yaitu mempelajari data yang ada dan formatnya. Kita dapat melihat di tab Data page.
image
Kita dapat melihat penjelasan dari data yang telah disediakan untuk kompetisi titanic.
image
Data set dibagi menjadi dua yaitu training data set dan test data set. Training data set akan kita gunakan untuk membuat model. Test data set adalah dataset yang kita pakai untuk membuat prediksi apakah selamat atau tidak.
Selain kedua data set tersebut kita juga diberikan contoh dari file submission yaitu gender_submission.csv
image
Mari kita perhatikan isi data set tersebut satu persatu. Pertama-tama kita akan melihat data set training

image
Kita dapat melihat bahwa formatnya adalah CSV dan kita juga mempunya header. Kolom yang akan di prediksi juga sudah tersedia yaitu kolom Survived. Mari kita lihat apa perbedaannya dengan test dataset.
SNAGHTML13ec73a3
Test dataset memiliki struktur yang sama dengan train dataset hanya saja tidak memiliki kolom survived. Oke sekarang kita akan melihat dataset terakhir yaitu submission.
image

Seperti yang kita lihat kita hanya memiliki dua kolom atau attribute yaitu passenger id dan status selamat atau tidak. File ini adalah file yang sudah memiliki format yang sesuai dengan penjelasan untuk submission. Kita dapat langsung saja mensubmit file ini ke Kaggle untuk Titanic.
Mari kita submit dan lihat hasil dari akurasi prediksi dari file tersebut. Untuk saat ini kita belum melakukan modeling atau bagaimana file tersebut dihasilkan, yang ingin kita dapatkan adalah sense dari bertanding di kaggle secara end to end. File di atas kemungkinan dihasilkan oleh salah satu algorithm blackbox yang dapat digunakan untuk binary classifier.

SNAGHTML13f29622
Klik submit prediction yang telah di sediakan.
image
Langsung saja drag and drop gender_submission.csv ke submission.
SNAGHTML13f4d10e
Klik submission maka file kita tersebut akan di grading secara otomatis. Setelah itu kita akan diberikan hasil dari submission tersebut.
image
Selamat anda telah berhasil memberikan submission pertama anda di kaggle. Anda adalah Kagglers now. Data Scientist !

SUMBER
https://indoml.com/2017/08/22/panduan-menggunakan-kaggle-untuk-pemula/
 https://weltam.wordpress.com/2017/04/20/berkompetisi-di-kaggle-part-1-perkenalan-dengan-platform-dan-dataset/

Tidak ada komentar:

Posting Komentar